A reconstructed discontinuous Galerkin method based on a Hierarchical WENO reconstruction for compressible flows on tetrahedral grids
نویسندگان
چکیده
A reconstructed discontinuous Galerkin (RDG) method based on a Hierarchical WENO reconstruction, termed HWENO(P1P2) in this work, designed not only to enhance the accuracy of discontinuous Galerkin method but also to ensure the nonlinear stability of the RDG method, is presented for solving the compressible Euler equations on tetrahedral grids. In this HWENO(P1P2) method, a quadratic polynomial solution (P2) is first reconstructed using a Hermite WENO (HWENO) reconstruction from the underlying linear polynomial (P1) discontinuous Galerkin solution to ensure the linear stability of the RDG method and to improve the efficiency of the underlying DG method. By taking advantage of handily available and yet invaluable information, namely the derivatives in the DG formulation, the stencils used in the reconstruction involve only von Neumann neighborhood (adjacent face-neighboring cells) and thus are compact and consistent with the underlying DG method. The gradients (first moments) of the quadratic polynomial solution are then reconstructed using a WENO reconstruction in order to eliminate spurious oscillations in the vicinity of strong discontinuities, thus ensuring the nonlinear stability of the RDG method. The developed HWENO(P1P2) method is used to compute a variety of flow problems on tetrahedral meshes to demonstrate its accuracy, robustness, and non-oscillatory property. The numerical experiments indicate that the HWENO(P1P2) method is able to capture shock waves within one cell without any spurious oscillations, and achieve the designed third-order of accuracy: one order accuracy higher than the underlying DG method.
منابع مشابه
A Reconstructed Discontinuous Galerkin Method Based on a Hierarchical Hermite WENO Reconstruction for Compressible Flows on Tetrahedral Grids
A hierarchical Hermite WENO reconstruction-based discontinuous Galerkin method, designed not only to enhance the accuracy of discontinuous Galerkin method but also to avoid spurious oscillation in the vicinity of discontinuities, is developed for compressible flows on tetrahedral grids. In this method, a quadratic polynomial solution is first reconstructed from the underlying linear polynomial ...
متن کاملAn Implicit Hermite WENO Reconstruction-Based Discontinuous Galerkin Method on Tetrahedral Grids
An Implicit Reconstructed Discontinuous Galerkin method, IRDG(P1P2), is presented for solving the compressible Euler equations on tetrahedral grids. In this method, a quadratic polynomial (P2) solution is first reconstructed using a least-squares method from the underlying linear polynomial (P1) DG solution. By taking advantage of the derivatives in the DG formulation, the stencils used in the ...
متن کاملA Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids
A weighted essential non-oscillatory reconstruction scheme based on Hermite polynomials is developed and applied as a limiter for a discontinuous Galerkin finite element method on unstructured grids. The solution polynomials are reconstructed using a WENO scheme by taking advantage of handily available and yet valuable information, namely the derivatives, in the context of the discontinuous Gal...
متن کاملHierarchical Reconstruction for Discontinuous Galerkin Methods on Unstructured Grids with a WENO Type Linear Reconstruction
The hierarchical reconstruction [11] is applied to discontinuous Galerkin method on the two-dimensional unstructured grids. We explore a variety of limiter functions used in the construction of piecewise linear polynomials. We show that due to the abrupt shift of stencils, the use of center biased limiter functions is essential in order to recover the desired order of accuracy. Furthermore, we ...
متن کاملA Reconstructed Discontinuous Galerkin Method for the Compressible Flows on Arbitrary Grids
A reconstruction-based discontinuous Galerkin method is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. In this method, an in-cell reconstruction is used to obtain a higher-order polynomial representation of the underlying discontinuous Galerkin polynomial solution and an inter-cell reconstruction is used to obtain a continuous polynomial solution on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 236 شماره
صفحات -
تاریخ انتشار 2013